MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Ра	ge 2		Scheme: Teachers' version	Syllabus	Paper	
			GCE C) LEVEL – May / June 2010	5070	22	
A1	(a)	CF₃C <i>l</i>				[1]	
	(b)	CH4 / CC	D ₂			[1]	
	(c)	CaCO ₃				[1]	
	(d)	BaSO ₄ /	CaCO ₃			[1]	
	(e)	$K_2Cr_2O_7$				[1]	
	(f)	C_2H_4				[1]	
						[Total: 6]	
A2	(a)	1 / one				[1]	
	(b)	number o	atomic) number of protons of electrons of neutrons	= 87 = 87 = 87 = 136			
			ct = 2 marks prrect = 1 mark			[2]	
	(c)	 election soft low (relation mail 	mal conductor / trical conductor / or cuts easily / melting point or atively) low densi eable /	/ low boiling point / ty or lightweight IGNORE: light			
		IGNORE	y or silvery ALL0 : floats on water : chemical prope			[2]	
	(d)	ALLOW: ALLOW:	$H_2O \rightarrow 2FrOH + multiples$ Fr + H ₂ O \rightarrow Fr			[1]	

[Total: 6]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May / June 2010	5070	22

A3 (a) $Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$

1 mark for correctly balanced equation;

1 mark for correct state symbols (dependent on all formulae being correct)

- (b) (i) gas escapes / hydrogen escapes / gas given off / hydrogen given off / gas released / hydrogen released / gas produced / gas evolved / hydrogen is a gas;
 [1] NOT: hydrogen produced without qualification. ALLOW: ecf from wrong gas in part (a)
 - (ii) downwards curve starting at the same point as the original curve but displayed to the left (at least at first); [1]

Line ends at the same mass as the original ; [1] NOT: curve dipping markedly below the horizontal section and then going upwards to meet it

(c) (acid) particles in dilute acid are less crowded / there are fewer particles (of acid) in a given volume / the particles (of acid) are further apart ; [1] ALLOW: concentration of HC*l* particles is lower ALLOW: molecules / ions in place of particles ALLOW: molecules / ions in place of particles in concentrated acid are more crowded / there are more particles (of acid) in a given volume etc IGNORE: there are fewer molecules unqualified / there is more water there are more moles in a given volume.

fewer collisions (in dilute acid) / less chance of collisions (in dilute acid) / frequency of collisions lower (in dilute acid) ; [1] ALLOW: reverse argument e.g. more collisions (in concentrated acid) / more chance of collisions (in concentrated acid) ; IGNORE: effective (collisions)

(d) more particles exposed / large(r) surface area ; [1] ALLOW: atoms / ions in place of particles

more collisions / greater chance of collisions / particles collide more often / greater frequency of collisions ; [1] IGNORE: effective (collisions)

(e) white precipitate / ppt or <u>white</u> solid ; [1] IGNORE: bubbles / colourless ppt / incorrectly named ppt

precipitate redissolves (in excess) / precipitate goes to (colourless) solution (in excess); [1] ALLOW: this mark if wrong colour precipitate NOTE: second mark dependent on ppt or solid stated for first mark

[Total: 11]

[2]

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE O LEVEL – May / June 2010	5070	22		
4	(a)	(a) graphite has electron(s) that can move / are mobile / are delocalised ; ALLOW: graphite has free electron(s) / graphite has a sea of electrons REJECT: implications of layers moving / ions have free electrons					
		are not n ALLOW:	has <u>all</u> its electrons involved in bonding / has ele nobile / no delocalised electrons ; diamond has no free electron(s) : mention of ions	ectron(s) that c	annot move / [1]		
	(b) solid sodium chloride has ions fixed in position / ions cannot move ; IGNORE: electrons cannot move / ions can't carry electricity / references to interme forces ALLOW: ions are not free						
		aqueous ALLOW: REJECT	: no ions to move sodium chloride has ions that can move / are mobile ; ions are free : reference to moving electrons as well as ions : ions carry electric charge / ions dislocated / ions delo		[1]		
	(c)	ALLOW: REJECT	ead at cathode and bromine at anode ; Pb at cathode / Br ₂ at anode : lead(II) / Pb ²⁺ / Br ⁻ / bromide		[1]		
		IGNORE 2 nd row: (REJECT IGNORE	oxygen / O ₂ ; : O ²⁻		[1]		
			nydrogen / H₂ ; : H⁺		[1]		
	(d)	definitely	cial use e.g. extraction of aluminium or any extracted by electrolysis / purification of copper / (elec	ctro)plating ;	nt which is [1]		

NOT: electrolysis **of** named substance unqualified / reference to electrochemical cells correct electrolyte / correct formula of electrolyte: This mark is dependent on the correct use BUT allow if it is feasible e.g. zinc sulphate (given incorrect use of zinc in the first part).

ALLOW: coating metals / hair removal / production of sodium hydroxide

e.g. molten aluminium oxide dissolved in <u>cryolite</u> / (aqueous) copper sulfate or copper sulfate (solution) / for hair removal accept sweat or sodium chloride (solution). [1]

correct ionic equation: This mark is dependent on the electrolyte used; [1] e.g. $Al^{3+} + 3e^- \rightarrow Al / Cu^{2+} + 2e^- \rightarrow Cu / 2H^+ + 2e^- \rightarrow H_2$

[Total: 10]

Page 5			Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE O LEVEL – May / June 2010	5070	22	
.5 (a)	cracl		[1]			
(b)	• •		$_{1} + H_{2}O \rightarrow C_{2}H_{5}OH$ OW: C ₂ H ₆ O for the product		[1]	
(ALL	anol; OW: propan-1-ol / propan-2-ol ORE: formulae		[1]	
(c)		• REJ • IGN(•	two from: temperature between 25°C to 40°C / ECT: high temperature IGNORE: room temperature yeast / zymase / enzymes / ORE: catalyst alone absence of oxygen / anaerobic (conditions) / not expose water REJECT: moisture / damp pH neutral / near neutral / pH 7 ORE: pressure / presence of glucose	sed to air	[2]	
((ii) any one of: renewable raw materials used or renewable fuel made NOT: renewable conserves valuable resources / lower energy costs / lower temperature required pressure required / consumes less energy / atmospheric pressure required equipment not required / simple apparatus required; ALLOW: carbon neutral / carbon dioxide made (in this process) can photosynthesis (to make more glucose) NOT: carbon dioxide can photosynthesis alone IGNORE: not as complicated / references to pollution / consumes er qualification NOT: costs alone / faster / uses glucose without qualification 					
• •	•		al) distillation / fractionation;		[1]	

- (a) (tractional) distillation / tractionation;
 ALLOW: description of distillation e.g. evaporating then condensing the alcohol (first)
 IGNORE: using an anhydrous salt / named anhydrous salt
- (e) <u>lime water</u> goes milky / cloudy / chalky / misty / white precipitate

[1]

[Total: 8]

Page 6	5	Mark Scheme: Teachers' version	Syllabus	Paper			
		GCE O LEVEL – May / June 2010	5070	22			
A6 (a) (i)		tion ; OW: additional ORE: specific names		[1]			
(ii)	(ii) minimum required is $C_2H_5CH=CH_2$						
(iii)	 (iii) no (carbon-carbon) double bonds / <u>only</u> has (carbon-carbon) single bonds ALLOW: no hydrogen can be added / no addition reactions / carbons fully (hydrogen atoms) NOT: occupied by wrong atoms e.g. Cl atoms NOT: has carbon-carbon single bonds 						

(b) non-biodegradeable / can't be broken down by bacteria / insoluble in water / <u>only</u> soluble in organic solvents
 [1]
 ALLOW: doesn't react with water / unreactive
 IGNORE: it is a hydrocarbon / it is strongly bonded

[Total: 4]

	Page 7			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE O LEVEL – May / June 2010	5070	22
B7	(a)	nitre har ALI effe NO	ogen mless _OW: ect / d	are harmless / product <u>s</u> are [1] to greenhouse qualification) /		
	(b)			eaking endothermic / requires energy / absorbs energy nd making exothermic / releases energy / gives out en		[1]
		mo	re en	ergy is released than absorbed (or similar wording) ;		[1]
		NO	TE:	: implication that energy needed in bond formation energy released on forming bonds is greater that or similar wording) = 2 marks	in energy taker	
	(c)	(i)	mole	es N ₂ H ₄ = 1 000 000 / 32 = 31 250 ;		[1]
				es O_2 = moles N_2H_4 or implication of this in working ; OW: ecf from wrong moles of N_2H_4		[1]
				ume of O_2 (31 250 × 24) = 750 000 dm ³ / 7.5 × 10 ⁵ dm ³ OW: ecf from second mark.	³ ,	[1]
			32 g	rnative for 1^{st} two stages: $y_1 N_2 H_4 \rightarrow 32g O_2 (1 mark)$ es $O_2 = 1 000 000 / 32 = 31 250 (allow ecf) (1 mark)$		
		(ii)	ALL capa	quid oxygen takes up less space / room ; OW: able to store more in liquid form / gaseous volum acity.		
				ORE: less easily spread out/no gas can escape / less vent reaction with other substances	possibility of ar	explosion / to
	(d)	(i)	N ₂ H	$_{5}Cl / N_{2}H_{6}Cl_{2}$		[1]
	. ,		ALL ALL	OW: any order of atoms OW: correct displayed formulae or mixtures of displaye IECT: N ₂ H ₅ C <i>l</i> in equation if more than one product give		
		(ii)	NOT	H H $\cdot x \cdot x$ $\cdot N = N$ $\cdot x \cdot x$ H H $\cdot x \cdot x$ H H $\cdot x \cdot x$ H H $\cdot x \cdot x$ H H $\cdot x \cdot x$ $\cdot x \cdot x$	crosses	[2]
			NOT	Γ: structures with separate nitrogen atoms / double bor	nds (= 0)	

Page 8									Paper			
					GCE	O LEV	'EL – Ma	ay / June :	2010		5070	22
B8	(a)	(i)	butar	noic aci	d / meth	nylprop	anoic ad	cid ;				[1
		(ii)					•	CH₃)₂CHC ie or mixtu		ictural and	d displayed	[1
		(iii)	C_2H_4	0								[1
	(b)	mo	ar rati	o corre	ct C = 4	.35, H	= 13.0,	O = 2.18 ;				[1
		or c	LOW: lown f	correct rom the C_2H_5OF	e first sta		d forwa	rd as lon	g as the	ere is no	t too muc	[1 h rounding u
	(c)	(i)	ethyl	ethano	ate ;							[1
		(ii)	ALLC		nake th	e taste	me / aro e in swee	ma / ets / deodo	orants			
	(d)		0 ∥ □- C	-0-∎)) –						[2
				ect strue e boxes			r linkago	e showing	g ALL a	toms and	l bonds (ir	cluding bond
		_	ALLC ALLC NOT ALLC	OW: est OW: bo> : more t OW: 0 ∥ - C - O	er linka kes or p han thr C U – ■ – C	ges re art fori ee type) ;	versed mulae be e of 'box	ation bond etween es es' ted and co	ter linkag	es the sa	me	
											as –COO-	or –CO2- etc
			fat / I									

	Ра	ge 9		Mark Scheme: Teachers' version GCE O LEVEL – May / June 2010	Syllabus 5070	Paper 22
B9	(a)	elec ALL	trons OW:	in which there is electron transfer / one reactant loses s / both oxidation <u>and</u> reduction occur ; a reaction involving change <u>s</u> in oxidation state : gaining and losing oxygen / gaining and losing hydro		he other gains [1]
	(b)	(i)	NOT (pos right ALL ALL	iodine present / lower concentration of iodine ; : less reactants present / diluted in colour because mo ition of) equilibrium moves to the right / increased ; OW: more hydrogen and iodine react to form hydroger OW: more hydrogen iodide formed / more product for eases (to achieve new equilibrium)	yield / reaction	moves to the [1]
				reaction is endothermic / the reaction absorbs heat (o	r energy) / Δ <i>H</i> is	positive; [1]
	(c)	ans	wer c	hydrogen = 45.3 / 2 = 22.65 only scores mark 22.7		[1]
				HI = 45.3; ecf / indication that moles HI 2× moles of hydrogen i.e	e. use of 1:2 ratio	[1]
				45.3 × 128) = 5798 g / 5798.4 g; ecf moles HI / 5800 g		[1]
		2 g so 1	hydro ⊢g hy	ve method: ogen → 2 × 128 = 256 g HI (1 mark) /drogen → 128 g HI (1 mark) /drogen → 45.3 × 256 / 2 = 5798(.4) g (1 mark)		
	(d)	(i)	Pb ²⁺	$(aq) + 2I^{-}(aq) \rightarrow PbI_{2}(s)$		[2]
			corre	nced equation = 1 mark ect state symbols = 1 mark (dependent on correct form OW: full ionic equation T: X ⁻ in place I ⁻ and PbX ₂ in place of PbI ₂	nulae above)	
		(ii)		X is a reducing agent / HI is a reducing agent / it or ised ;	X can be oxidise	ed / HI can be [1]

Pag	ge 1(0	Mark Scheme: Teachers' version	Syllabus	Paper			
			GCE O LEVEL – May / June 2010	5070	22			
B10(a)	(i)	ALL ALL IGN	$H + HCl \rightarrow KCl + H_2O$ OW: $K_2CO_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$ OW: $KHCO_3 + HCl \rightarrow KCl + H_2O + CO_2$ ORE: state symbols T: word equation		[1]			
	 (ii) titrate (acid against alkali) / titration / description of titration e.g. add one solution to ther until neutralised / add one solution to another until (acid-base) indicat colour; IGNORE: lack of repeating the titration without indicator 							
	Evaporate the solution (from the titration flask to dryness) ; ALLOW: evaporate / heat / boil							
	ALLOW: evaporate / neat / bon ALLOW: ecf from wrongly named <u>solution</u> in first marking point ALLOW: evaporation etc from potassium chloride / salt <u>solution</u> without reference titration REJECT: if method incorrect e.g. precipitation the mark for part (ii) is zero in total.							
				part (ii) 13 2010				
(b)	(i)		₄) ₃ PO ₄ OW: PO ₄ (NH ₄) ₃		[1]			
	(ii)		ar mass (NH ₄) ₃ PO ₄ = 149; OW: ecf from wrong formula in part (i)		[1]			
		ALL	y mass = 28.2 OW: 28.19 / 28 OW: ecf from wrong molar mass		[1]			
(c)	(i)	ALL	$\begin{array}{l} DH)_2 + 2H^+ \rightarrow Ca^{2+} + 2H_2O \\ OW: Ca^{2+} + 2OH^- + 2H^+ \rightarrow Ca^{2+} + 2OH^- + 2H_2O \\ OW: OH^- + H^+ \rightarrow H_2O \text{ (or multiples)} \end{array}$		[1]			
	(ii)	nitro ALL IGN	nonium phosphate (reacts with calcium hydroxide to) g gen (content) with ammonium phosphate OW: reverse arguments ORE: ammonia poisonous / potassium nitrate is more s ECT: loses nitrogen gas / potassium nitrate has a grea	soluble	[1]			
(d)			ess) sodium hydroxide and aluminium (powder / foil ar add sodium hydroxide and Devarda's alloy	nd warm) ;	[1]			
			a given off / gas (given off) turns red litmus blue; his mark is dependent on correct reagents $Al + NaOH$		[1]			
	add		ve: (II) sulfate then concentrated sulfuric acid (1 mark) ng forms at the interface (1 mark)					